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1 Adjoints of Unbounded Operators

1.1 Adjoints

Last time, we showed that if P =
∑
|α|≤m aα(x)Dα on L2(Ω) where Ω ⊆ Rn is open and

aα ∈ C∞(Ω), then we get a minimal realization: Pmin with D(Pmin) = {u ∈ L2 :
∃ϕn ∈ C∞0 (Ω) : ϕn → u, Pϕn conv.} given by Pminu = limn→∞ Pϕn. We also defined the
maximal realization Pmax with D(Pmax) = {u ∈ L2 : Pu ∈ L2}, where Pu is taken
in the sense of distributions. Here, we have Pmin ⊆ Pmax, where both of these are closed
operators.

Recall the definition of an adjoint: In a Hilbert space H, if T ∈ L(H,H), the adjoint
T ∗ ∈ L(H,H) is defined by 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H. For unbounded operators,
we will define this, paying attention to the domains.

Definition 1.1. Let T : D(T )→ H be densely defined. We define the adjoint T ∗ by

D(T ∗) = {v ∈ H : ∃f ∈ H s.t. 〈Tu, v〉 = 〈u, f〉 ∀u ∈ D(T )},

T ∗v = f.

Remark 1.1. The requirement that T is densely defined is crucial to this definition. D(T )
is dense, so f is unique if it exists. In particular, 〈Tu, v〉 = 〈u, T ∗v〉 for all u ∈ D(T ) and
v ∈ D(T ∗).

Remark 1.2. By the Riesz representation theorem,

D(T ∗) = {v ∈ H : ∃C = Cv > 0 s.t. | 〈Tu, v〉 | ≤ C‖u‖, u ∈ D(T )}.

1.2 Examples: adjoints of differential operators

Example 1.1. Let Ω ⊆ Rn be open, P =
∑
|α|≤m aα(x)Dα with aα ∈ C∞(Ω), where

D = 1
i ∂. Let PΩ = P with D(PΩ) = C∞0 (Ω). Let’s compute P ∗Ω.
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First, associated to P is the formal adjoint P ∗ defined by 〈Pu, v〉L2 = 〈u, P ∗v〉L2 for
all u, v ∈ C∞0 (Ω) (such an operator exists for any differential operator). We can calculate
the formula using integration by parts:

P ∗v =
∑
|α|≤m

Dα
x (aα(x)v).

So P ∗ is a differential operator of order m with C∞ coefficients.
To compute the adjoint P ∗Ω, we have

D(P ∗Ω) = {v ∈ L2 : ∃f ∈ L2 s.t. 〈Pu, v〉L2 = 〈u, f〉 ∀u ∈ C∞0 (Ω)}
= {v ∈ L2 : P ∗v = f ∈ L2},

where P ∗v is taken in the sense of distributions. In other words, D(P ∗Ω) = {v ∈ L2 : P ∗v ∈
L2} = D(P ∗max), the maximal realization of the formal adjoint, and P ∗Ωv = P ∗v.

Sometimes, we can give a nice local description of the domain of the adjoint.

Example 1.2. Assume that P =
∑
|α|≤m aα(x)Dα is elliptic in the sense that if p(x, ξ) =∑

|α|=m aα(x)ξα for x ∈ Ω, ξ ∈ Rn, then p(x, ξ) 6= 0 for all x ∈ Ω, ξ 6= 0. Then we have

{v ∈ L2 : P ∗v ∈ L2} ⊆ Hm
loc(Ω) = {u ∈ L2

loc(Ω) : ∂αu ∈ L2
loc(Ω) ∀|α| ≤ m},

a local Sobolev space.

1.3 The graph of the adjoint

Proposition 1.1. Let T : D(T )→ H be densely defined. The graph of the adjoint is

G(T ∗) = [V (G(T ))]⊥,

where V : H ×H → H ×H sends (u, v) 7→ (v,−u).

Remark 1.3. Taking the closure is a matter of taste. Since we are taking the orthogonal
complement, it does not matter whether or not we close the graph or not, since the result
will be closed.

Proof. When u ∈ D(T ) and (v, w∗) ∈ H ×H, we have

〈V (u, Tu), (v, w∗)〉H×H = 〈Tu, v〉 − 〈u,w∗〉 .

The right hand side is 0 for all u ∈ D(T ) if and only if v ∈ D(T ∗), T ∗v = w∗. This
is equivalent to (v, w∗) ∈ G(T ∗). The left hand side is 0 for all u ∈ D(T ) iff (v, w∗) ∈
[V (G(T ))]. So G(T ∗) = [V (G(T ))]⊥ = [V (G(T ))]⊥.
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Corollary 1.1. T ∗ is closed.

Remark 1.4. If densely defined operators T1 ⊆ T2 in the sense that G(T1) ⊆ G(T2), then
T ∗2 ⊆ T ∗1 .

Is T ∗ densely defined?

Proposition 1.2. T is closable if and only if D(T ∗) is dense. In this case, (T ∗)∗ = T .

Proof. ( =⇒ ): Assume there is a nonzero w ∈ H such that w ⊥ D(T ∗). Then for every
v ∈ D(T ∗),

〈(0, w), (T ∗v,−v)〉H×H = 0,

so (0, w) ∈ [V (G(T ∗))]⊥ = V (G(T ∗)⊥). Recall that G(T ∗) = [V (G(T ))]⊥, so (0, w) ∈
V (V (G(T ))). V 2 = −1, so (0, w) ∈ G(T ). So w = 0, as T is closable.

(⇐= ): The proof is a similar computation.
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